Observation of the density minimum in deeply supercooled confined water
نویسندگان
چکیده
Small angle neutron scattering (SANS) is used to measure the density of heavy water contained in 1D cylindrical pores of mesoporous silica material MCM-41-S-15, with pores of diameter of 15 1 Å. In these pores the homogenous nucleation process of bulk water at 235 K does not occur, and the liquid can be supercooled down to at least 160 K. The analysis of SANS data allows us to determine the absolute value of the density of D2O as a function of temperature. We observe a density minimum at 210 5 K with a value of 1.041 0.003 g/cm3. We show that the results are consistent with the predictions of molecular dynamics simulations of supercooled bulk water. Here we present an experimental report of the existence of the density minimum in supercooled water, which has not been described previously.
منابع مشابه
Transport properties of supercooled confined water
This article presents an overview of recent experiments performed on transport properties of water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We report data of nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, studying water confined in nanometer-scale envi...
متن کاملMolecular Probe Dynamics Reveals Suppression of Ice-Like Regions in Strongly Confined Supercooled Water
The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We ...
متن کاملThe anomalous behavior of the density of water in the range 30 K < T < 373 K.
The temperature dependence of the density of water, rho(T), is obtained by means of optical scattering data, Raman and Fourier transform infrared, in a very wide temperature range, 30 < T < 373 K. This interval covers three regions: the thermodynamically stable liquid phase, the metastable supercooled phase, and the low-density amorphous solid phase, at very low T. From analyses of the profile ...
متن کاملEvidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube.
Possible transition between two phases of supercooled liquid water, namely the low- and high-density liquid water, has been only predicted to occur below 230 K from molecular dynamics (MD) simulation. However, such a phase transition cannot be detected in the laboratory because of the so-called "no-man's land" under deeply supercooled condition, where only crystalline ices have been observed. H...
متن کاملDynamic Crossover and Liquid-liquid Critical Point in the Tip5p
Water is hypothesized to have a low temperature phase transition line which separates a high density water at high temperatures from a low density water at low temperatures. This negatively sloped first order liquid-liquid phase coexistence line terminates at a critical point known as the liquid-liquid critical point. This critical point is hypothesized to exist in a deeply supercooled region o...
متن کامل